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Abstract 

One way to describe the problem of digital halftoning is as a 
search for the quantized image that minimizes the visibility 
of artifacts. To apply this approach in practice, it is first 
necessary to specify a computational model for computing 
visible error that can be used to rank candidate images 
automatically. The model may be incorporated directly into 
a search algorithm, or used after-the-fact to rank images 
produced by algorithms that are more heuristic. These 
approaches have been quite successful when applied to 
achromatic images, even when using a relatively simple 
visual model accounting for high-frequency contrast 
sensitivity but with no masking. This approach can be 
directly generalized to additional dimensions such as time 
and color. Visual models based on threshold measures may 
not be optimal for low bit rate conditions where 
quantization noise is visible. Instead, the degree to which 
the noise is effortlessly segmented through perceptual 
scission may influence the utility of the final image. 

Introduction 

There are many situations in which we wish to display a 
continuous tone image on a device with a more restricted 
range of output tones. The classic example is printing, 
where we have ink that is either present or not present. Ten 
or fifteen years ago, it was common for a computer graphics 
display to have 8 (or fewer) bits per pixel, which also 
prevented direct “truecolor” rendering of images. Even 
today, when full color 24 bit per pixel displays are the 
norm, there are still demanding applications such as medical 
imaging and visual testing where we may wish to render 
images which have too large or too small a dynamic range 
to be rendered properly on conventional hardware. In many 
cases, digital halftoning is the answer. 

The underlying assumption of all halftoning processes 
is that the display will be viewed at a distance such that the 
display device has a resolution higher than that of the visual 
system. Neighboring display elements will fall upon a single 
visual receptor, and their levels will be averaged. Correct 
implementation of visually optimized halftoning requires 
advance knowledge of the intended viewing conditions, and 
is only optimal when those conditions are met. 

Visual Resolution 

Perhaps the most familiar measure of visual resolution is 
Snellan acuity, measured with a letter chart and expressed 
by terms such as “20-20.” The Snellan letters are presented 
at high contrast, and the clinician determines the smallest 
size that can be accurately read. A somewhat richer measure 
is provided by the Contrast Sensitivity Function (CSF). This 
function describes the sensitivity (inverse of threshold 
contrast) for a set of spatial frequencies. Human contrast 
sensitivity peaks at a spatial frequency of around one cycle 
per degree (cpd), at a value of around 100 (corresponding to 
a contrast of 1%).1 

An initial limitation on contrast sensitivity is imposed 
by the optics of the eye. The optical performance of the 
system can be described by the point spread function (PSF) 
or optical Modulation Transfer Function (MTF). Normal 
(emmetropic) eyes optically pass image frequencies up to 
around 60 cpd, which is well matched to the sampling rate 
of the array of photoreceptors in the center of the retina, or 
fovea.2 Contrast sensitivity also shows a low-frequency fall
off that is not predicted by optical factors, but must arise 
from subsequent neural processing. This insensitivity to low 
frequencies allows us to be content with display monitors 
that are brighter in the center than at the edges, but is 
generally irrelevant for halftoning. 

Another neural effect is manifested in the relative 
sensitivity to patterns of different orientations. While the 
optical MTF has approximate circular symmetry (for most 
eyes), contrast sensitivity is generally less for oblique 
orientations than for horizontal and vertical, known as the 
“oblique effect”.3-6 

Contrast sensitivity describes absolute threshold for a 
pattern in the absence of any other patterns. This is 
appropriate for describing the visibility of halftoning 
artifacts in large uniform areas, but is only approximately 
correct when there are other spatial patterns present. In 
general, the presence of other patterns reduces sensitivity 
somewhat, a phenomenon that is referred to as “masking.” 
Masking has been found to be frequency selective, with a 

7“critical band” of one or two octaves. Masking data are 
often represented as threshold-versus-intensity (TVI) 
curves, in which the abscissa represents the strength (e.g., 
contrast) of the mask; the ordinate plots the strength 
(contrast) of the test stimulus which can just be detected in 
the presence of the given mask. Sometimes the test and 
mask are the same spatial pattern; in this case, the 
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measurement is referred to as the “increment threshold.” At 
high levels of the masking stimulus, the threshold rises with 
increasing mask level.8,9 

Assessing Halftone Quality 

It is not always easy to provide a quantitative definition of 
what constitutes the visual quality of a halftone image, but 
we know it when we see it. Exactly what is it that makes us 
prefer one halftone texture and not another? At this point, 
we should make an important distinction between what we 
will call “fine-scale” and “coarse-scale” halftones. Fine
scale halftoning refers to situations in which the display 
elements making up the halftone texture are very small 
(compared to visual resolution), as is often the case for 
printers. In this case, the halftone texture is likely to be 
invisible, or at least near threshold, and the threshold 
models referred to in the preceding section are appropriate. 
When the halftoning elements are large, however, the 
pattern is likely to be quite visible, and it is not obvious that 
threshold models are at all suitable for describing visual 
quality in this case. Ironically, most papers on this topic 
present example patterns in which the pattern is clearly 
visible (even if this requires magnification) so that the 
reader can see the detailed micropatterns produced by 
different algorithms. While it is true that this is necessary to 
see the fine-scale differences, it is perhaps sub-optimal for 
assessing visual quality. 

There are some situations where coarse-scale halftoning 
is the only option, such as rendering images for display on 
low-resolution computer screens. In this situation, 
invisibility of the halftone pattern may be an impossible 
dream. In this case, minimizing the visibility of the texture 
may be less important than minimizing interference with the 
intended image content. While it is not obvious how to do 
this, one general principle might be to minimize the local 
spectral overlap between the source image and the error 
image. In the remainder of this paper we will restrict our 
attention to visibility-based approaches. 

A common approach10-13 to computing halftone quality 
is as follows: first, an error filter is defined, representing the 
low-pass characteristic of the visual system. It is convenient 
to define this filter in the space domain, where it can have a 
restricted region of support (3x3, 5x5, etc.). Next, an error 
image is computed by subtracting the desired values from 
the halftone values. This error image is then blurred by 
application of the filter. Finally, the sum of squares of the 
blurred values is computed to produce an overall measure of 
error. While the exponent of 2 is almost universally used for 
error summation, there is no firm theoretical basis for this. 
Using a higher exponent (such as 4) should give higher 
weighting to the largest errors, which might be desirable in 
a situation where the errors are mostly invisible, except for a 
few artifacts. Curiously, however, when we redo the 
analysis done in our 1992 paper10 using the exponent of 4 
instead of 2, we obtain the same condition for flipping a 
pixel, implying that these two metrics produce the same 
ranking of halftone patterns. 

Attaining Quality 

Halftoning methods can be divided into two classes: those 
that directly incorporate a visual model, and use it in an 
error minimization loop, and those that employ an effective 
heuristic, which although not directly based on a visual 
model nevertheless produces good results. Most of the early 

14 work, as exemplified by ordered dither and error 
15diffusion falls into the latter category. These tend to be 

single-pass algorithms that are relatively easy to compute. 
More recent methods that directly incorporate the visual 
model10-13,16 tend to be iterative procedures, and are much 
more computationally intensive. The general approach is to 
start with an initial image (which might be the output of 
another algorithm, random noise, or whatever you like) and 
sequentially visit individual pixels and try to improve the 
total error at that location. In the method we call “strict 
descent,”10 only changes to the single pixel in question are 
considered. Alternatively, changes to the pixel and its 
neighbors can all be considered. In the method called 
“Direct Binary Search”11 up to eight changes are considered, 
corresponding to exchanging a pixel’s value with each of its 
eight nearest neighbors. Because this method only considers 
exchanges, the total number of on and off bits is not 
changed, so choice of the initial image is important. We 
have obtained good results using a 9-way search in which 
we consider both flipping the pixel in question, and 
exchanging it with each of the 8 neighbors. 

Extensions to Color 

The ideas from the preceding sections can be easily 
generalized to the case of color. Lights of different colors 
can be characterized by their “luminance,” which is a 
spectrally weighted energy measure that captures how 
effective a given light is at evoking a sensation of flicker or 
motion. When the different colors that make up a pattern are 
matched in luminance, the resulting pattern is said to be 
“equiluminant” or “isoluminant.” Vision for equiluminant 
stimuli is characterized by two main differences: first, there 
is diminished spatial and temporal resolution; second, the 
chromatic CSF does not show the low-frequency decline 

1,17 seen for achromatic patterns. 
The reduced spatial acuity of the chromatic system has 

suggested ways to improve halftone quality by moving error 
from the luminance component to the chromatic 
component, where it will presumably be less visible.12,13,18 

For an image represented by red, green, and blue 
components, we might begin by independently halftoning 
each color component down to 1 bit, then combining to 
form an image with 8 different basic pixel colors. (At least, 
this is reasonable for images to be viewed on an emissive 
display such as a computer monitor, where the color 
components combine additively. It may not be appropriate 
for the printing situation, depending on the characteristics of 
the inks.) In this case, we would expect the locations of 
“on” pixels in each of the color planes to be independent. 
For example, in a region with 50% red pixels on and 50% 
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green pixels on, we would expect to find approximately 
25% of the pixels colored with each category: red, green, 
yellow, and black. Clearly, we can attain the same space
average yellow with a pattern made up of black and yellow 
elements (red and green planes perfectly correlated) or of 
red and green elements (red and green planes perfectly 
uncorrelated). In the latter case, however, the local 
luminance variation will be less, so if that is indeed the most 
visible artifact then this pattern should be preferred. For 
arbitrary colors, however, it is generally impossible to 
anticorrelate the color bitplanes exactly, and the gains from 
these techniques are modest. 

Extensions to the Time Domain 

Visual resolution can be characterized in time as well as 
space, and while this is not relevant for printed halftones, 
some improvements can be realized for dynamic media such 
as video and computer displays. Contrast sensitivity in the 
time domain is qualitatively similar to what is observed for 
the space domain. The achromatic function is bandpass, 
peaking at a frequency of around 10 Hz,19,20 while chromatic 
sensitivity is low-pass, with relatively poor sensitivity to 
high temporal frequency.1 “Color fusion” occurs for lights 
which are matched in luminance and exchanged at 20 or 30 
Hz; if the luminances are mismatched, flicker is seen but no 
color variation. Eliminating the visible flicker in this 
situation is known as “heterochromatic flicker photometry” 
(HFP), which provides the operational definition of 
luminance. 

Many of the previously discussed methods may be 
directly generalized to three dimensions. Filtered error 

10-13minimization can easily be reformulated in terms of error 
filtered in the time domain as well as two spatial dimen
sions, although the computational cost rises significantly. In 
addition, there are heuristic methods that perform 

14 reasonably well. Ordered dither has been generalized to 
21three dimensions. Similarly, one can imagine generalizing 

15error diffusion to three dimensions, with the addition of 
one or more frames of storage to hold the errors to be 
diffused in time. In error diffusion, the weights normally 
sum to one, insuring that gray levels will be preserved. 
Carrying this principle over to a three-dimensional 
generalization would have the result that the within-frame 
weights have a sum less than one, however, resulting in 
distortion of the first frame. While this would be corrected 
eventually, a more flexible approach is that of purely 

21-23temporal error diffusion. In this approach, the first frame 
is processed with a chosen two-dimensional algorithm. The 
error image is computed by subtracting the desired values 
from the halftone values, and this error image is subtracted 
from the desired values for the next frame. Weighting the 
error by a constant less than one will insure that their effect 
is limited in time; alternatively, the errors from a small 
number of immediately preceding frames can be combined 
using a finite-impulse response filter. This scheme is quite 
general; in addition to halftoning, it can be applied to other 

forms of gray level quantization, such as MPEG or motion-
JPEG compression. 

Scission 

Animated sequences produced with the temporal algorithms 
described in the previous section are often markedly 
superior to a static rendering. There are two reasons for this: 
first, assuming some temporal integration in the visual 
system, the desired signal is represented more faithfully, as 
intended. The second factor is less obvious: in an animated 
sequence, the halftone “noise” is dynamic (changes rapidly 
in time), while the underlying image to be presented is 
static. This allows a perceptual segregation or “scission” to 
occur, in which the target image is seen “through” the noise, 
much as one can see the road clearly through a dirty 
windshield. Perceptual scission occurs at the whims of 
individual subjects’ idiosyncrasies, but can be strongly 
influenced by factors such as stereo disparities.24 

Previously, we have discussed the halftoning problem 
in terms of minimizing the visibility of the artifacts. This is 
appropriate for high-quality halftones in which we expect 
that the errors can be made invisible, but our observation of 
perceptual scission suggests a different approach for situ
ations where the halftone errors will be visible. To facilitate 
scission, instead of trying to minimize the visibility of the 
halftone noise, we might instead try to minimize its spectral 
overlap with the target image. Note that this is the opposite 
of approaches that rely on masking of artifacts by the target 
image itself.25 In that case we allow more error in spectral 
bands where the target image has a high power level. Again, 
this is sensible when we expect that the artifacts will be 
invisible, but may impede perception of the target image in 
the presence of visible artifacts. 

By analogy with the temporal case, we might imagine 
that to facilitate scission in a static image we should attempt 
to decorrelate the local noise spectrum with that of the 
target image. To incorporate this idea into methods based on 
filtered error minimization, we would want to use a space
variant filter whose properties depend on the local image 
content in place of a fixed filter based on detection data. 
Because the phenomenon of perceptual scission is less well 
understood than simple thresholds, there is not a good set of 
reference data from which to design the filter properties. 
Some trial-and-error experimentation will therefore be 
needed to explore this approach. 

Summary 

Computational visual models can be useful for halftoning 
algorithms, especially when plenty of preprocessing time is 
available, and high quality is the overriding priority. 
Previous implementations have, for the most part, been 
based on a single channel model. Multiple channel models 
may be better predictors of quality, particularly for the case 
of temporal halftoning, where a single channel model will 
be blind to coherent motion. Approaches using traditional 
models are best suited to high quality halftones where the 
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artifacts are near threshold. For lower quality halftones, a 
criterion based on visual scission may be more appropriate. 
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